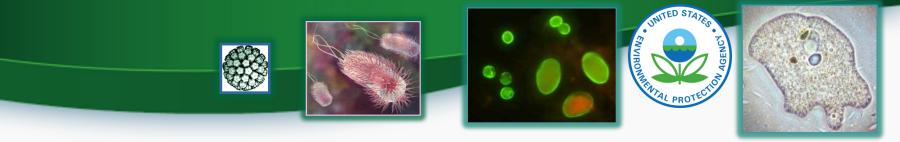
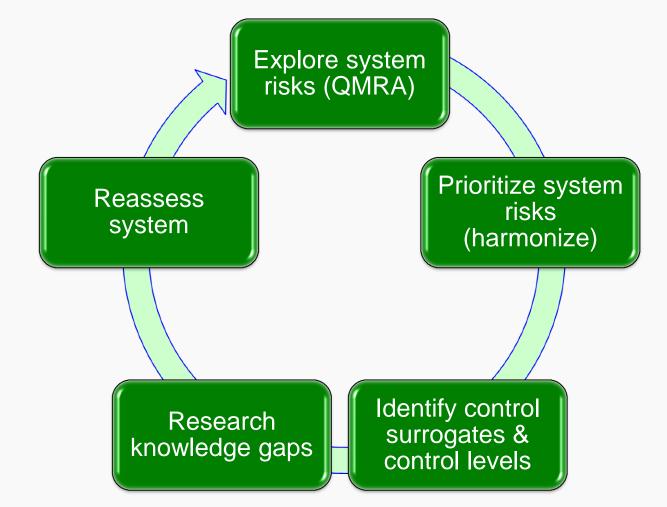
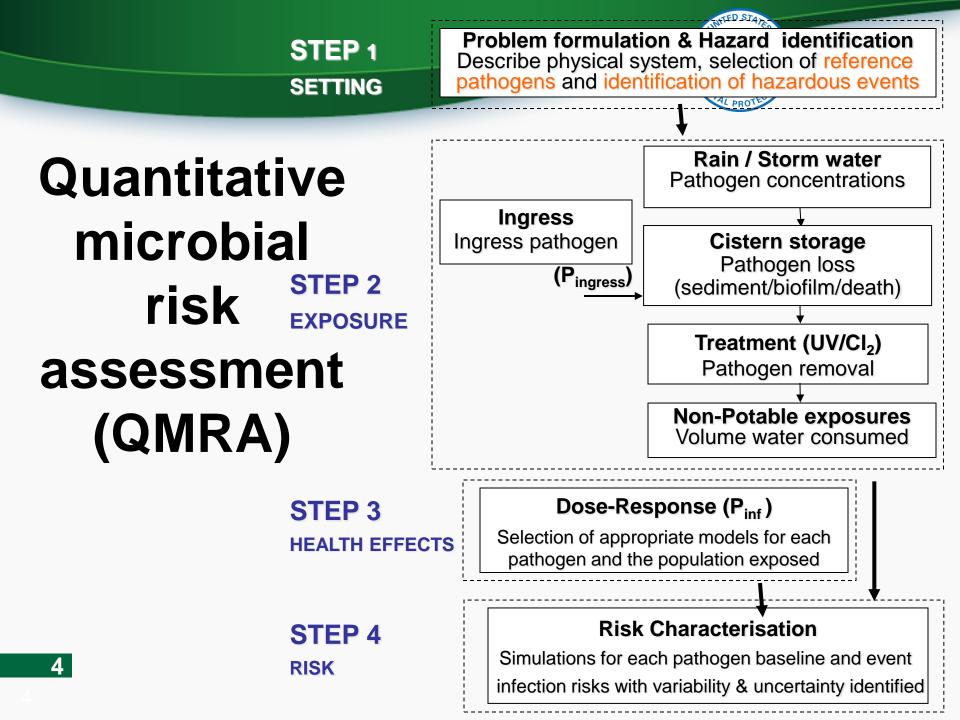
Characterization and Quantification of Microbial Risks: Rainwater/stormwater

Nicholas J. Ashbolt – ORD, U.S. EPA, Cincinnati Ashbolt.Nick@EPA.gov

Disclaimer – not necessarily EPA views/policy

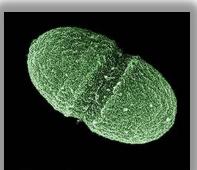

Technologies & Innovative Solutions for Harvesting and Non-Potable Use of Rain & Stormwater in Urban Settings Session 3: Duke Center, Cincinnati April 25, 2013

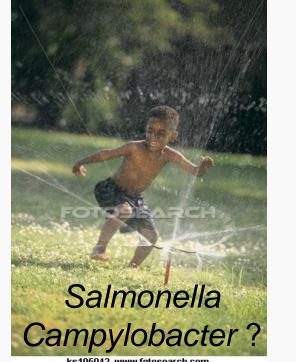

Problems with water monitoring


- Tests results received after water used
- Too many parameters for frequent testing & the only microbial indicator included is *E. coli*
 - But *E. coli* is a poor indicator for viral and protozoan pathogen removal/inactivation & does not indicated presence of environmental pathogens (e.g. *Legionella*)
- For many hazards there is no suitable test

Therefore use a risk management approach

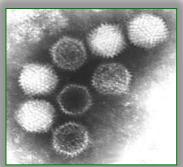
QMRA – Analytic Framework


5

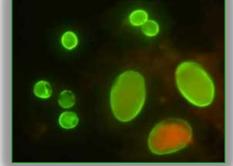

Hazard identification & characterization Describe physical system, selection of reference pathogens and identification of hazardous events

Grounding from epi studies Indicator? ← Exposure ← Outcome

Dean & Hunter (2012) Env Sci Technol 46(5), 2501-2507 \ Rodrigo *et al.* (2011) Amer J Pub Health 101(5), 842-847


Hazard identification & characterization Describe physical system, selection of reference pathogens and identification of hazardous events

Epi provides disease data – Limited on pathogens


- Gastroenteritis
- Respiratory
- Skin, eye infections
- Neurological

-Other sequellae

Including non-GI disease requires a common metric (DALY) Focus now on exposure reconstruction (saliva, sera etc.)

Hazard identification & characterization Describe physical system, selection of reference pathogens and identification of hazardous events

Drinking water public health costs

- CDC estimate waterborne disease costs > \$970 m/y
 - Addressing giardiasis, cryptosporidiosis, Legionnaires' disease, otitis externa, and non-tuberculous mycobacterial (NTM) infections, causing over 40 000 hospitalizations per year

Disease	\$ / hospitalization	Total cost	
Cryptosporidiosis	\$16 797	\$45 770 572	
Giardiasis	\$9 607	\$34 401 449	
Legionnaires' disease	\$33 366	\$433 752 020	
NTM infection/Pulmonary	\$25 985 / \$25 409	\$425 788 469/ \$194 597 422	

Collier et al. (2012) Epi Inf 140(11), 2003-2013

8

Pathogens in source & Barrier removals For nominal periods and hazardous events

Ahmed *et al.* (2012) Appl Environ Microbiol 78(1):219-226 **Rainwater pathogen estimates**

Reference Pathogen	Range (% +ve /#)	
Salmonella enterica	0.9% /125 – 11% /27	
Campylobacter jejuni	ND /125 – 45% /27	
<i>E. coli</i> O157:H7	ND (not detected)	
Cryptosporidium parvum	ND – 35% /17	
Giardia intestinalis	ND /125 – 19% /21	
Legionella spp. (few L. pneumophila)	ND /125 – 26% /27	

Fecal pathogens all event driven, i.e. washed-in roof scats Use culture & PCR data to bound credible ranges

Rationale for indicator qPCR vs pathogen detection – in stormwater (~ 100-fold)

- Target pathogen density (rec water 0.03 GI risk swim⁻¹)
 - e.g. for one of the most numerous sewage pathogens:

9 *Norovrius* genomes L⁻¹ of rec water ➡ 0.03 GI risk

Changing *Norovirus* morbidity based on infection from best estimate 0.6 to 0.1 increases target density **to 80** *Norovrius* genomes L⁻¹ (half to a tenth if recovery accounted for)

- *Bacteroides* HF183 target for same level of contamination from sewage to cause the benchmark (0.03 GI) illness:
 - 8600 Bacteroides HF183 genome copies L⁻¹

Ashbolt et al. (2010) Wat Res 44:4692-4703

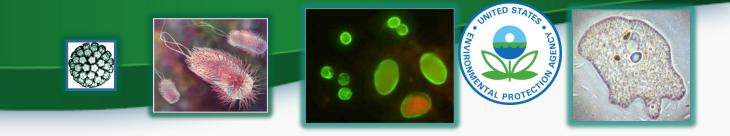
Rain/Storm water fecal indicators

- Microbial source tracking markers
 - General & avian fecal markers
 - various Bacteroidales PCRs however, no avian targets
 - Catellicoccus PCR or cholesterol markers for avian excreta
 - Sewage-targeted (various Bacteroides, e.g. HF183)
- Surrogates for pathogen removals
 - Baker's yeast for Crypto & Giardia oo/cysts
 - Bacteriophages for human enteric viruses

Surrogates for stormwater treatment

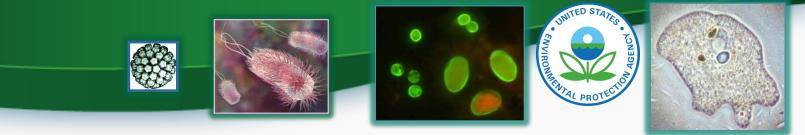
- Three stormwater recycling systems evaluated*, which included biofiltration, storage tanks, UV disinfection, constructed wetland, retention ponds
- Barrier efficacy studied by MS2, yeast & E. coli
 - Over 12 mo under wet & dry conditions, e.g. biofilter log-reductions

Replicate	MS2 phage	E. coli	Yeast
1	1.5	1.8	2.9
2	1.2	1.6	2.3

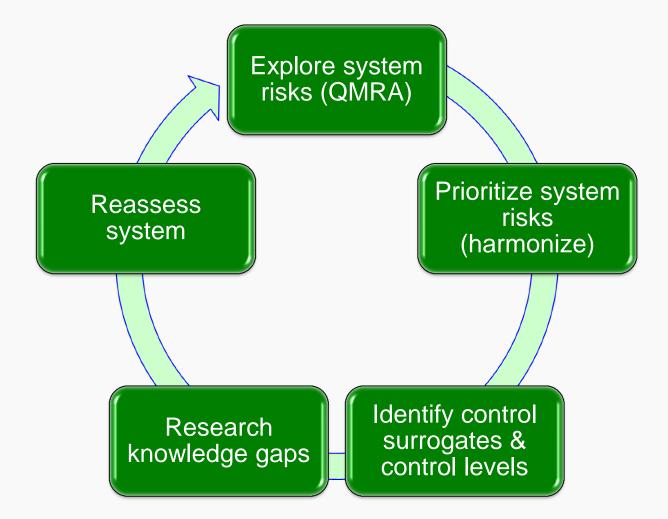

*Davies et al. (2008) Water Sci Technol 57(6):843-847

Rainwater reference pathogens Dose-Response data, and find...

- Campylobacter more important than Salmonella
- Toxigenic *E. coli* very infectious, but rare
- Cryptosporidium probably > Giardia
- Of the viruses, possibly bird flu of interest
- Of environmental pathogens, only *L. pneumophila* dose-response data available



Hazardous events vs nominal


- Enteric pathogen risks depend upon:
 - ID and control of short-duration hazardous events throughout the system; via
 - Surrogate target levels (at control points)
 - Rainwater: is disinfection on/functioning?
 - Stormwater: are barriers intact/functioning?
- Environmental pathogen risk is largely a function of chronic conditions

Warm stagnant water/biofilms-nutrients

13

QMRA – Analytic Framework

Conclusions: research gaps

- Need qPCR estimates of infectious pathogens and generally, precision estimates
- Need to correlate qPCR targets/surrogates to specific pathogens by environment type (fate)
- Hence, need to identify primary risks of concern and their control parameters for effective rain & storm water management